hliu092 发表于 2021-2-10 09:54:42

Metabolomics (4-7):Metebolomics and Immunology Cultivation/新陈代谢组学之4-7

This is the article 10-7 in the theme 'Environmental Physiology/环境生理学' of Journal of Environment and Health Science.

2021. Copyrights Certificate Registered by Brock Chain Technology: Certificate NO. (TTAS_S.0.2_73312490446437580747650542619426733719567350) ; Certificate Verification Web: https://ttas.ntsc.ac.cn

2016. Copyrights Register Information: The majority of these materials are registered as book '著作权人:刘焕;作品:《研究生文凭进展(第三版)》' 2016, which can be cataloged in National Copyright Database: http://qgzpdj.ccopyright.com.cn/

2016. 版权注册信息:本文大多数内容已经以图书形式登记注册在全国版权数据库,登记入库信息:著作权人:刘焕;作品:《研究生文凭进展(第三版)》 2016;可在全国版权登记数据库检索 http://qgzpdj.ccopyright.com.cn/

The formally published serials is the printing <Journal of Environment and Health Science (ISSN 2314-1628)>, and the serials NO. is the month/year when the materials accessible on this website, authorized by publisher;
正式发表的期刊是印刷版《环境与卫生科学杂志(ISSN 2314-1628)》,期刊期号为文章内容在本网站上网年/月,出版人许可自行正式发表。

Originality Certificate: The originality of text in English is 98% tested by Turnitin (International). The Turnitin Originality Report is attached in PDF summary.

All Copyrights Reserved.

hliu092 发表于 2021-2-19 11:15:42

Article 10-7. The Synthesis of Biological Antibiotics and Its Application on Bio-medicine/生物抗生素合成与在生物医药中的应用

Author: Liu Huan, MSc (First Class Honours), The University of Auckland.
Published after graduation on 11/01/2016, Revised on 10/02/2021.

In previous articles, the immunology of host cells becomes the key to resist the invasive pathogen. Nevertheless, there are some exceptions that the immunological potential of host cells, which relies on the synthesis of antibiotics in host cells, may not be sufficient to resist the invasive pathogen (such as congenital defect of rat species against a specific pathogen). Then the vegetation antibiotics is helpful as complementary solution. The steps of synthesis of vegetation antibiotics are similar to previous article.

Step 1. N×N samples of a vegetation species, which has been identified to be helpful in biomedicine, are cultivated during simulation of different electromagnetic wave conditions;
Step 2. Different frequency of electromagnetic wave (or different wavelength) are simulated, and labeled as F1, F2, ..., Fn;
Step 3. Metabolomics test is conducted individually after cultivation in F1, F2,...Fn, respectively.
Step 4. Under each simulated frequency of electromagnetic wave, different electromagnetic waveintensity (AND amplitude) are simulated, and labeled as I1,   I2, ..., and In.
Step 5. Metabolomics test is conducted individually after cultivation in I1, I2,...In, respectively. The amount of N×N metabolomics tests are conducted in total.
Step 6. In total N×N different samples of vegetation antibiotics are abstracted from each different cultivation condition (The method of this abstraction is the same as the preparation of Traditional Chinese Medicine).
Step 7. Each sample of vegetation antibiotics is injected into the invasive simulation of pathogens targeting the host cells of rats respectively, in combination with the training of host cells discussed in other articles.
Step 8. The infection of host cells are observed, and the effectiveness of each sample of vegetation antibiotics is decided correspondingly.

It is expected that a combination of antibiotics from both host cells and vegetation leads to the best solution, and a combination of different vegetation antibiotics is more effective. However, the ‘dead’ antibiotics abstracted from vegetation is not as effective as ‘living’ antibiotics in host cells, due to the evolved resistance ofpathogens against the static or constant antibiotics. Actually, there are lots of cases that insect pests frequently evolve into resistance to VERY toxic pesticides, which is the same phenomenon. Please note: the abstraction of vegetation antibiotics here is on the basis of ancient preparation method of Chinese medicine, and the advantages of this is to consider all the vegetation metabolites cultivated in Lab as the whole substances for antibiotics, rather than separating a specific chemistry species from the vegetation metabolites, which can be proven by that plant resistance (or antibiotics) substances usually contain multiple biochemistry species discussed in other articles. Another advantages of ancient preparation of Chinese medicine is to provide additional nutrition for host cells. During effective vegetation antibiotics condition, the invasive pathogens are usually dormant so that the competition in nutrition between host cells and pathogens is minimized. Otherwise the additional nutrition may benefit the pathogens rather than host cells.

There are three kinds of vegetation species selected in future research for better ‘diversity of antibiotics’: one is the Ganoderma Lucidum (I started to grow this from 2011), another is Anoectochilus roxburghii (Wall.) Lindl.(I started to grow this from 2016. Not only human species know this, but also wild pigs must be keen to look for this vegetation for remediation after injury), and the last one is rhizome of Leguminosae species, because the symbiosis of rhizobium in Leguminosae species leads to antibiotics with higher dynamics from both vegetation cells and rhizobium cells. However, the inoculation of various rhizobium, which successfully lead to tumour in root system as symbiosis, is necessary. The reason of enriching rhizobium biodiversity has been discussed in other articles (the specificity of host-invasion interaction), which results in various antibiotics from both plant cells and microbial cells.

For the shading-habitat plant species, which suits shading environment only for growth, plants' leaves usually turns to be yellow when they are long-termly exposedto the intensive sunshine. Inversely, the leaves of sunshine-habitat plant species turn from green into yellow when they are shaded. For the shading habitat plant such asthe Anoectochilus roxburghii (Wall.) Lindl. as well as Ganoderma Lucidum, the intensity of UV-B radiation must be reduced for the cultivation, as compared to the intensity used in other articles of this journal.

In addition to the synthesis of vegetation antibiotics for biomedicine, the inoculation of microbial vaccine in animals such us rats, pointed out in other article of this journal, also provides effective way of generating antibiotics for biomedicine production against similar genetic strains. However, in this case, symbiosis between microbial vaccine and host cells is not compulsory, which means that the host cells can be ‘eaten up’ by microbial vaccine for biomedicine production. Please note: according to the Traditional Chinese Medicine, the biomedicine made from animal cells tends to be ‘warm,’ possibly due to too much animal proteins, which need to be incorporated into vegetation biomedicines (which tends to be ‘cool’) as mixtures for best biomedicines.


References:
All the science terms in English of this journal source from Wikipedia:
https://encyclopedia.thefreedictionary.com/;
本文所有中文科学专业术语引用自百度百科 https://baike.baidu.com/。

hliu092 发表于 2021-2-10 09:57:03

Article 10-7. The Synthesis of Biological Antibiotics and Its Application on Bio-medicine/生物抗生素合成与在生物医药中的应用

Author: Liu Huan, MSc (First Class Honours), The University of Auckland.
Published after graduation on 11/01/2016, Revised on 10/02/2021.

In previous articles, the immunology of host cells becomes the key to resist the invasive pathogen. Nevertheless, there are some exceptions that the immunological potential of host cells, which relies on the synthesis of antibiotics in host cells, may not be sufficient to resist the invasive pathogen (such as congenital defect of rat species against a specific pathogen). Then the vegetation antibiotics is helpful as complementary solution. The steps of synthesis of vegetation antibiotics are similar to appendix 4.

Step 1. N×N samples of a vegetation species, which has been identified to be helpful in biomedicine, are cultivated during simulation of different electromagnetic wave conditions;
Step 2. Different frequency of electromagnetic wave (or different wavelength) are simulated, and labeled as F1, F2, ..., Fn;
Step 3. Metabolomics test is conducted individually after cultivation in F1, F2,...Fn, respectively.
Step 4. Under each simulated frequency of electromagnetic wave, different electromagnetic waveintensity (AND amplitude) are simulated, and labeled as I1,   I2, ..., and In.
Step 5. Metabolomics test is conducted individually after cultivation in I1, I2,...In, respectively. The amount of N×N metabolomics tests are conducted in total.
Step 6. In total N×N different samples of vegetation antibiotics are abstracted from each different cultivation condition (The method of this abstraction is the same as the preparation of Traditional Chinese Medicine).
Step 7. Each sample of vegetation antibiotics is injected into the invasive simulation of pathogens targeting the host cells of rats respectively, in combination with the training of host cells discussed in other articles.
Step 8. The infection of host cells are observed, and the effectiveness of each sample of vegetation antibiotics is decided correspondingly.

It is expected that a combination of antibiotics from both host cells and vegetation leads to the best solution, and a combination of different vegetation antibiotics is more effective. However, the ‘dead’ antibiotics abstracted from vegetation is not as effective as ‘living’ antibiotics in host cells, due to the evolved resistance ofpathogens against the static or constant antibiotics. Actually, there are lots of cases that insect pests frequently evolve into resistance to VERY toxic pesticides, which is the same phenomenon. Please note: the abstraction of vegetation antibiotics here is on the basis of ancient preparation method of Chinese medicine, and the advantages of this is to consider all the vegetation metabolites cultivated in Lab as the whole substances for antibiotics, rather than separating a specific chemistry species from the vegetation metabolites, which can be proven by that plant resistance (or antibiotics) substances usually contain multiple biochemistry species discussed in other articles. Another advantages of ancient preparation of Chinese medicine is to provide additional nutrition for host cells. During effective vegetation antibiotics condition, the invasive pathogens are usually dormant so that the competition in nutrition between host cells and pathogens is minimized. Otherwise the additional nutrition may benefit the pathogens rather than host cells.

There are three kinds of vegetation species selected in future research for better ‘diversity of antibiotics’: one is the Ganoderma Lucidum (I started to grow this from 2011), another is Anoectochilus roxburghii (Wall.) Lindl.(I started to grow this from 2016. Not only human species know this, but also wild pigs must be keen to look for this vegetation for remediation after injury), and the last one is rhizome of Leguminosae species, because the symbiosis of rhizobium in Leguminosae species leads to antibiotics with higher dynamics from both vegetation cells and rhizobium cells. However, the inoculation of various rhizobium, which successfully lead to tumour in root system as symbiosis, is necessary. The reason of enriching rhizobium biodiversity has been discussed in other articles (the specificity of host-invasion interaction), which results in various antibiotics from both plant cells and microbial cells.

For the shading-habitat plant species, which suits shading environment only for growth, plants' leaves usually turns to be yellow when they are long-termly exposedto the intensive sunshine. Inversely, the leaves of sunshine-habitat plant species turn from green into yellow when they are shaded. For the shading habitat plant such asthe Anoectochilus roxburghii (Wall.) Lindl. as well as Ganoderma Lucidum, the intensity of UV-B radiation must be reduced for the cultivation, as compared to the intensity used in other articles of this journal.

In addition to the synthesis of vegetation antibiotics for biomedicine, the inoculation of microbial vaccine in animals such us rats, pointed out in other article of this journal, also provides effective way of generating antibiotics for biomedicine production against similar genetic strains. However, in this case, symbiosis between microbial vaccine and host cells is not compulsory, which means that the host cells can be ‘eaten up’ by microbial vaccine for biomedicine production. Please note: according to the Traditional Chinese Medicine, the biomedicine made from animal cells tends to be ‘warm,’ possibly due to too much animal proteins, which need to be incorporated into vegetation biomedicines (which tends to be ‘cool’) as mixtures for best biomedicines.


References:
All the science terms in English of this journal source from Wikipedia:
https://encyclopedia.thefreedictionary.com/;
本文所有中文科学专业术语引用自百度百科 https://baike.baidu.com/。

hliu092 发表于 2021-2-10 09:57:07

Article 10-7. The Synthesis of Biological Antibiotics and Its Application on Bio-medicine/生物抗生素合成与在生物医药中的应用

Author: Liu Huan, MSc (First Class Honours), The University of Auckland.
Published after graduation on 11/01/2016, Revised on 10/02/2021.

In previous articles, the immunology of host cells becomes the key to resist the invasive pathogen. Nevertheless, there are some exceptions that the immunological potential of host cells, which relies on the synthesis of antibiotics in host cells, may not be sufficient to resist the invasive pathogen (such as congenital defect of rat species against a specific pathogen). Then the vegetation antibiotics is helpful as complementary solution. The steps of synthesis of vegetation antibiotics are similar to appendix 4.

Step 1. N×N samples of a vegetation species, which has been identified to be helpful in biomedicine, are cultivated during simulation of different electromagnetic wave conditions;
Step 2. Different frequency of electromagnetic wave (or different wavelength) are simulated, and labeled as F1, F2, ..., Fn;
Step 3. Metabolomics test is conducted individually after cultivation in F1, F2,...Fn, respectively.
Step 4. Under each simulated frequency of electromagnetic wave, different electromagnetic waveintensity (AND amplitude) are simulated, and labeled as I1,   I2, ..., and In.
Step 5. Metabolomics test is conducted individually after cultivation in I1, I2,...In, respectively. The amount of N×N metabolomics tests are conducted in total.
Step 6. In total N×N different samples of vegetation antibiotics are abstracted from each different cultivation condition (The method of this abstraction is the same as the preparation of Traditional Chinese Medicine).
Step 7. Each sample of vegetation antibiotics is injected into the invasive simulation of pathogens targeting the host cells of rats respectively, in combination with the training of host cells discussed in other articles.
Step 8. The infection of host cells are observed, and the effectiveness of each sample of vegetation antibiotics is decided correspondingly.

It is expected that a combination of antibiotics from both host cells and vegetation leads to the best solution, and a combination of different vegetation antibiotics is more effective. However, the ‘dead’ antibiotics abstracted from vegetation is not as effective as ‘living’ antibiotics in host cells, due to the evolved resistance ofpathogens against the static or constant antibiotics. Actually, there are lots of cases that insect pests frequently evolve into resistance to VERY toxic pesticides, which is the same phenomenon. Please note: the abstraction of vegetation antibiotics here is on the basis of ancient preparation method of Chinese medicine, and the advantages of this is to consider all the vegetation metabolites cultivated in Lab as the whole substances for antibiotics, rather than separating a specific chemistry species from the vegetation metabolites, which can be proven by that plant resistance (or antibiotics) substances usually contain multiple biochemistry species discussed in other articles. Another advantages of ancient preparation of Chinese medicine is to provide additional nutrition for host cells. During effective vegetation antibiotics condition, the invasive pathogens are usually dormant so that the competition in nutrition between host cells and pathogens is minimized. Otherwise the additional nutrition may benefit the pathogens rather than host cells.

There are three kinds of vegetation species selected in future research for better ‘diversity of antibiotics’: one is the Ganoderma Lucidum (I started to grow this from 2011), another is Anoectochilus roxburghii (Wall.) Lindl.(I started to grow this from 2016. Not only human species know this, but also wild pigs must be keen to look for this vegetation for remediation after injury), and the last one is rhizome of Leguminosae species, because the symbiosis of rhizobium in Leguminosae species leads to antibiotics with higher dynamics from both vegetation cells and rhizobium cells. However, the inoculation of various rhizobium, which successfully lead to tumour in root system as symbiosis, is necessary. The reason of enriching rhizobium biodiversity has been discussed in other articles (the specificity of host-invasion interaction), which results in various antibiotics from both plant cells and microbial cells.

For the shading-habitat plant species, which suits shading environment only for growth, plants' leaves usually turns to be yellow when they are long-termly exposedto the intensive sunshine. Inversely, the leaves of sunshine-habitat plant species turn from green into yellow when they are shaded. For the shading habitat plant such asthe Anoectochilus roxburghii (Wall.) Lindl. as well as Ganoderma Lucidum, the intensity of UV-B radiation must be reduced for the cultivation, as compared to the intensity used in other articles of this journal.

In addition to the synthesis of vegetation antibiotics for biomedicine, the inoculation of microbial vaccine in animals such us rats, pointed out in other article of this journal, also provides effective way of generating antibiotics for biomedicine production against similar genetic strains. However, in this case, symbiosis between microbial vaccine and host cells is not compulsory, which means that the host cells can be ‘eaten up’ by microbial vaccine for biomedicine production. Please note: according to the Traditional Chinese Medicine, the biomedicine made from animal cells tends to be ‘warm,’ possibly due to too much animal proteins, which need to be incorporated into vegetation biomedicines (which tends to be ‘cool’) as mixtures for best biomedicines.


References:
All the science terms in English of this journal source from Wikipedia:
https://encyclopedia.thefreedictionary.com/;
本文所有中文科学专业术语引用自百度百科 https://baike.baidu.com/。
页: [1]
查看完整版本: Metabolomics (4-7):Metebolomics and Immunology Cultivation/新陈代谢组学之4-7